Add like
Add dislike
Add to saved papers

Gut bacterium Burkholderia cepacia (BsNLG8) and immune gene Defensin A contribute to the resistance against Nicotine-induced stress in Nilaparvata lugens (Stål).

Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app