Add like
Add dislike
Add to saved papers

Quasi-intrinsic thiobase derivatives as potential targeted photosensitizers in two-photon photodynamic therapy.

In this study, a set of potential quasi-intrinsic photosensitizers for two-photon photodynamic therapy (PDT) are proposed based on the unnatural 2-amino-8-(1'-β-ᴅ-2'-deoxyribofuranosyl)-imidazo[1,2-ɑ]-1,3,5-triazin-4(8H)-one (P), which is paired with the 6-amino-5-nitro-3-(1'-β-ᴅ-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and can specifically recognize breast and liver cancer cells. Herein, the effects of sulfur substitution and electron-donating/electron-withdrawing groups on the photophysical properties in aqueous solution are systematically investigated. The one- and two-photon absorption spectra evidence that the modifications could result in red-shifted absorption wavelength and large two-photon absorption cross-section, which contributes to selective excitation and provides effective PDT for deep-seated tissues. To ensure the efficient triplet state population, the singlet-triplet energy gaps and spin-orbit coupling constants were examined, which is responsible for a rapid intersystem crossing rate. Furthermore, these thiobase derivatives are characterized by the long-lived T1 state and the large energy gap for radiationless transition to ensure the generation of cytotoxic singlet oxygen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app