Add like
Add dislike
Add to saved papers

A novel entropy-driven dual-output mode integrated with DNAzyme for enhanced microRNA detection.

Talanta 2024 April 25
Accurate microRNA (miRNA) detection is pivotal in the diagnosis and monitoring of cancer. Entropy-driven catalysis (EDC) has attracted widespread attention as an enzyme-free, isothermal technique for miRNA detection owing to its inherent simplicity and reliability. However, conventional EDC is a single-output mode, limiting the efficiency of signal amplification. In this study, a novel EDC dual-output mode was employed in conjunction with DNAzyme, resulting in the development of an EDC dual-end DNAzyme (EDC-DED) approach for highly sensitive miRNA detection. In this system, miRNA-21 initiated the EDC reaction, producing a large amount of catalytically active dual-end Mg2+ -dependent DNAzyme. The DNAzyme further cleaved the reporter cyclically, generating a notably amplified fluorescence signal. The proposed method achieved a low detection limit of 2 pM. Compared with the traditional EDC single-end DNAzyme (EDC-SED) strategy, the present method exhibited superior amplification efficiency, enhancing detection sensitivity by approximately 46.5-fold. Furthermore, this platform demonstrated ideal specificity, satisfactory reproducibility and acceptable detection capabilities in clinical serum samples. Therefore, the straightforward and convenient strategy is a potential tool for miRNA analysis, which may provide a new perspective for biological analysis and clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app