Add like
Add dislike
Add to saved papers

Optimizing lentiviral vector formulation conditions for efficient ex vivo transduction of primary human T cells in chimeric antigen receptor T-cell manufacturing.

Cytotherapy 2024 April 8
BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell products are commonly generated using lentiviral vector (LV) transduction. Optimal final formulation buffer (FFB) supporting LV stability during cryostorage is crucial for cost-effective manufacturing.

METHODS: To identify the ideal LV FFB composition for ex vivo CAR-T production, primary human T cells were transduced with vesicular stomatitis virus G-protein (VSV-G) -pseudotyped LVs (encoding a reporter gene or an anti-CD19-CAR). The formulations included phosphate-buffered saline (PBS), HEPES, or X-VIVOTM 15, and stabilizing excipients. The functional and viral particle titers and vector copy number were measured after LV cryopreservation and up to 24 h post-thaw incubation. CAR-Ts were produced with LVs in selected FFBs, and the resulting cells were characterized.

RESULTS: Post-cryopreservation, HEPES-based FFBs provided higher LV functional titers than PBS and X-VIVOTM 15, and 10% trehalose-20 mM MgCl2 improved LV transduction efficiency in PBS and 50 mM HEPES. Thawed vectors remained stable at +4°C, while a ≤ 25% median decrease in the functional titer occurred during 24 h at room temperature. Tested excipients did not enhance LV post-thaw stability. CAR-Ts produced using LVs cryopreserved in 10% trehalose- or sucrose-20 mM MgCl2 in 50 mM HEPES showed comparable transduction rates, cell yield, viability, phenotype, and in vitro functionality.

CONCLUSION: A buffer consisting of 10% trehalose-20 mM MgCl2 in 50 mM HEPES provided a feasible FFB to cryopreserve a VSV-G -pseudotyped LV for CAR-T-cell production. The LVs remained relatively stable for at least 24 h post-thaw, even at ambient temperatures. This study provides insights into process development, showing LV formulation data generated using the relevant target cell type for CAR-T-cell manufacturing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app