Add like
Add dislike
Add to saved papers

Electride pure α -Zr: interstitial electrons induced type-II nodal line.

Electrides have attracted significant attention in the fields of physics, materials science, and chemistry due to their distinctive electron properties characterized by weak nuclear binding. In this study, based on first-principles calculations and symmetry analysis, we report that the pure zirconium with alpha-phase ( α -Zr) is expected to be the electrically neutral electride with topological nodal loop. Furthermore, the nodal loop located at the kz = 0 plane exhibits a clear drumhead-like surface state. The energy levels of the topological nodal loop can be regulated by applying uniaxial strain, resulting in the topological nodal loop being closer to the Fermi level. Remarkably, the work function of the electride Zr shows a significant anisotropy along the (001), (100), and (110) directions, particularly with a low work function of 3.14 eV along the (110) surface. Therefore, we predict that α -Zr provides a promising platform for future research on topological electrides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app