Add like
Add dislike
Add to saved papers

CO 2 -facilitated upcycling of polyolefin plastics to aromatics at low temperature.

Plastics are one of the most produced synthetic materials and largest commodities, used in numerous sectors of human life. To upcycle waste plastics into value-added chemicals is a global challenge. Despite significant progress in pyrolysis and hydrocracking, which mainly leads to the formation of pyrolysis oil, catalytic upcycling to value-added aromatics, including benzene, toluene and xylene (BTX), in one step, is still limited by high reaction temperatures (>500°C) and a low yield. We report herein CO2 -facilitated upcycling of polyolefins and their plastic products to aromatics below 300°C, enabled by a bifunctional Pt/MnOx -ZSM-5 catalyst. ZSM-5 catalyzes cracking of polyolefins and aromatization, generating hydrogen at the same time, while Pt/MnOx catalyzes the reaction of hydrogen with CO2 , consequently driving the reaction towards aromatization. Isotope experiments reveal that 0.2 kg CO2 is consumed per 1.0 kg polyethylene and 90% of the consumed CO2 is incorporated into the aromatic products. Furthermore, this new process yields 0.63 kg aromatics (BTX accounting for 60%), comparing favorably with the conventional pyrolysis or hydrocracking processes, which produce only 0.33 kg aromatics. In this way, both plastic waste and the greenhouse gas CO2 are turned into carbon resources, providing a new strategy for combined waste plastics upcycling and carbon dioxide utilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app