Add like
Add dislike
Add to saved papers

Structural health monitoring of aircraft through prediction of delamination using machine learning.

BACKGROUND: Structural health monitoring (SHM) is a regular procedure of monitoring and recognizing changes in the material and geometric qualities of aircraft structures, bridges, buildings, and so on. The structural health of an airplane is more important in aerospace manufacturing and design. Inadequate structural health monitoring causes catastrophic breakdowns, and the resulting damage is costly. There is a need for an automated SHM technique that monitors and reports structural health effectively. The dataset utilized in our suggested study achieved a 0.95 R2 score earlier.

METHODS: The suggested work employs support vector machine (SVM) + extra tree + gradient boost + AdaBoost + decision tree approaches in an effort to improve performance in the delamination prediction process in aircraft construction.

RESULTS: The stacking ensemble method outperformed all the technique with 0.975 R2 and 0.023 RMSE for old coupon and 0.928 R2 and 0.053 RMSE for new coupon. It shown the increase in R2 and decrease in root mean square error (RMSE).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app