Add like
Add dislike
Add to saved papers

Short-term wind power forecasting through stacked and bi directional LSTM techniques.

BACKGROUND: Computational intelligence (CI) based prediction models increase the efficient and effective utilization of resources for wind prediction. However, the traditional recurrent neural networks (RNN) are difficult to train on data having long-term temporal dependencies, thus susceptible to an inherent problem of vanishing gradient. This work proposed a method based on an advanced version of RNN known as long short-term memory (LSTM) architecture, which updates recurrent weights to overcome the vanishing gradient problem. This, in turn, improves training performance.

METHODS: The RNN model is developed based on stack LSTM and bidirectional LSTM. The parameters like mean absolute error (MAE), standard deviation error (SDE), and root mean squared error (RMSE) are utilized as performance measures for comparison with recent state-of-the-art techniques.

RESULTS: Results showed that the proposed technique outperformed the existing techniques in terms of RMSE and MAE against all the used wind farm datasets. Whereas, a reduction in SDE is observed for larger wind farm datasets. The proposed RNN approach performed better than the existing models despite fewer parameters. In addition, the approach requires minimum processing power to achieve compatible results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app