Add like
Add dislike
Add to saved papers

Ectopic Reconstitution of a Spine-Apparatus Like Structure Provides Insight into Mechanisms Underlying Its Formation.

bioRxiv 2024 April 17
The endoplasmic reticulum (ER) is a continuous cellular endomembrane network that displays focal specializations. Most notable examples of such specializations include the spine apparatus of neuronal dendrites, and the cisternal organelle of axonal initial segments. Both organelles exhibit stacks of smooth ER sheets with a narrow lumen and interconnected by a dense protein matrix. The actin-binding protein synaptopodin is required for their formation. Here, we report that expression in non-neuronal cells of a synaptopodin construct targeted to the ER is sufficient to generate stacked ER cisterns resembling the spine apparatus with molecular properties distinct from the surrounding ER. Cisterns within these stacks are connected to each other by an actin-based matrix that contains proteins also found at the spine apparatus of neuronal spines. These findings reveal a critical role of a synaptopodin-dependent actin matrix in generating cis-ternal stacks. These ectopically generated structures provide insight into spine apparatus morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app