Add like
Add dislike
Add to saved papers

RNA Profiling of Brain Microvessels Reveals Altered Morphology and Signaling in a Mouse Model of Alzheimer's Disease.

Research Square 2024 April 13
Disruptions in pericyte and endothelial cell expression can compromise the integrity of the blood-brain barrier (BBB), leading to neurovascular dysfunction and the development of neurological disorders. However, the study of microvessel RNAs has been limited to tissue homogenates, with spatial visualization only available for protein targets. We introduce an innovative microvessel isolation technique that is RNA-friendly for the purpose of coupling with RNAscope analysis. RNA-friendly microvessel isolation combined with RNAscope analysis enables the visualization of cell-specific RNA within the spatial and histological context of the BBB. Using this approach, we have gained valuable insights into the structural and functional differences associated with the microvessels of 5XFAD mice, a mouse model of Alzheimer's disease (AD). RNAscope analysis revealed a decrease in pericytes from microvessels isolated from 5XFAD mice in comparison to wild-type mice. Additionally, the microvessels of 5XFAD mice exhibited an increase in TYROBP mRNA expression. These findings significantly advance our understanding of neurovascular interactions and hold great promise for guiding the development of targeted therapeutic interventions. This innovative approach enables visualization of cell RNA while preserving the spatial and histological context of the BBB, shedding light on the mechanisms underlying neurovascular unit communication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app