Add like
Add dislike
Add to saved papers

Measuring the dynamic balance of integration and segregation underlying consciousness, anesthesia, and sleep.

bioRxiv 2024 April 16
Consciousness requires a dynamic balance of integration and segregation in functional brain networks. An optimal integration-segregation balance depends on two key aspects of functional connectivity: global efficiency (i.e., integration) and clustering (i.e., segregation). We developed a new fMRI-based measure, termed the integration-segregation difference (ISD), which captures both aspects. We used this metric to quantify changes in brain state from conscious wakefulness to loss of responsiveness induced by the anesthetic propofol. The observed changes in ISD suggest a profound shift to segregation in both whole brain and all brain subnetworks during anesthesia. Moreover, brain networks displayed similar sequences of disintegration and subsequent reintegration during, respectively, loss and return of responsiveness. Random forest machine learning models, trained with the integration and segregation of brain networks, identified the awake vs. unresponsive states and their transitions with accuracy up to 93%. We found that metastability (i.e., the dynamic recurrence of non-equilibrium transient states) is more effectively explained by integration, while complexity (i.e., diversity and intricacy of neural activity) is more closely linked with segregation. The analysis of a sleep dataset revealed similar findings. Our results demonstrate that the integration-segregation balance is a useful index that can differentiate among various conscious and unconscious states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app