Add like
Add dislike
Add to saved papers

Mechanochemical Synthesis and Three-Dimensional Electron Diffraction Structure Solution of a Novel Cu-Based Protocatechuate Metal-Organic Framework.

Mechanochemical synthesis is a powerful approach to obtain new materials, limiting costs, and times. However, defected and submicrometrical-sized crystal products make critical their characterization through classical single-crystal X-ray diffraction. A valid alternative is represented by three-dimensional (3D) electron diffraction, in which a transmission electron microscope is used, like a diffractometer. This work matches a green water-based mechanochemical synthesis and 3D electron diffraction to obtain and characterize a Cu-based protocatechuate metal-organic framework (PC-MOF). Its structure has been fully refined through dynamical diffraction theory, and free water molecules could be detected in the channels of the framework. Thermal characterization, focused on the dehydration profile determination, leads to the formation of a novel high-temperature 2D coordination polymer, fully solved with 3D electron diffraction data. At last, the strong activity of the PC-MOF against cationic dyes like methylene blue has been reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app