Journal Article
Review
Add like
Add dislike
Add to saved papers

A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications.

Biomacromolecules 2024 April 25
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app