Add like
Add dislike
Add to saved papers

ACP-DRL: an anticancer peptides recognition method based on deep representation learning.

Cancer, a significant global public health issue, resulted in about 10 million deaths in 2022. Anticancer peptides (ACPs), as a category of bioactive peptides, have emerged as a focal point in clinical cancer research due to their potential to inhibit tumor cell proliferation with minimal side effects. However, the recognition of ACPs through wet-lab experiments still faces challenges of low efficiency and high cost. Our work proposes a recognition method for ACPs named ACP-DRL based on deep representation learning, to address the challenges associated with the recognition of ACPs in wet-lab experiments. ACP-DRL marks initial exploration of integrating protein language models into ACPs recognition, employing in-domain further pre-training to enhance the development of deep representation learning. Simultaneously, it employs bidirectional long short-term memory networks to extract amino acid features from sequences. Consequently, ACP-DRL eliminates constraints on sequence length and the dependence on manual features, showcasing remarkable competitiveness in comparison with existing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app