Add like
Add dislike
Add to saved papers

Decentralized stochastic sharpness-aware minimization algorithm.

In recent years, distributed stochastic algorithms have become increasingly useful in the field of machine learning. However, similar to traditional stochastic algorithms, they face a challenge where achieving high fitness on the training set does not necessarily result in good performance on the test set. To address this issue, we propose to use of a distributed network topology to improve the generalization ability of the algorithms. We specifically focus on the Sharpness-Aware Minimization (SAM) algorithm, which relies on perturbation weights to find the maximum point with better generalization ability. In this paper, we present the decentralized stochastic sharpness-aware minimization (D-SSAM) algorithm, which incorporates the distributed network topology. We also provide sublinear convergence results for non-convex targets, which is comparable to consequence of Decentralized Stochastic Gradient Descent (DSGD). Finally, we empirically demonstrate the effectiveness of these results in deep networks and discuss their relationship to the generalization behavior of SAM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app