Add like
Add dislike
Add to saved papers

Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma.

PURPOSE: Glioblastoma (GBM) patient outcomes remain poor despite multimodality treatment with surgery, radiation, and chemotherapy. There are few immunotherapy options due to the lack of tumor immunogenicity. Several clinical trials have reported promising results with cancer vaccines. To date, studies have used data from a single tumor site to identify targetable antigens, but this approach limits the antigen pool and is antithetical to the heterogeneity of GBM. We have implemented multisector sequencing to increase the pool of neoantigens across the GBM genomic landscape that can be incorporated into personalized peptide vaccines called NeoVax.

PATIENTS AND METHODS: Here, we report the findings of four subjects enrolled onto the NeoVax clinical trial (NCT0342209).

RESULTS: Immune reactivity to NeoVax neoantigens was assessed in peripheral blood mononuclear cells (PBMCs) pre- and post-NeoVax for subjects 1-3 using IFNg-ELISPOT assay. A statistically significant increase in IFNg producing T cells at the post-NeoVax time point for several neoantigens was observed. Furthermore, a post-NeoVax tumor biopsy was obtained from subject 3 and, upon evaluation, revealed evidence of infiltrating, clonally expanded T cells.

CONCLUSIONS: Collectively, our findings suggest NeoVax did stimulate expansion of neoantigen-specific effector T cells and provide encouraging results to aid in the development of future neoantigen vaccine-based clinical trials in patients with GBM. Herein, we demonstrate the feasibility of incorporating multisector sampling in cancer vaccine design and provide information on the clinical applicability of clonality, distribution, and immunogenicity of the neoantigen landscape in GBM patients.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app