Add like
Add dislike
Add to saved papers

A supramolecular colloidal system based on folate-conjugated β-cyclodextrin polymer and indocyanine green for enhanced tumor-targeted cell imaging in 2D culture and 3D tumor spheroids.

Indocyanine green (ICG) is an FDA-approved medical diagnostic agent that is widely used as a near-infrared (NIR) fluorescent imaging molecular probe. However, ICG tends to aggregate to form dimers or H-aggregates in water and lacks physical and optical stability, which greatly decreases its absorbance and fluorescence intensity in various applications. Additionally, ICG has no tissue- or tumor-targeting properties, and its structure is not easy to modify, which has further limited its application in cancer diagnosis. In this study, we addressed these challenges by developing a supramolecular colloidal carrier system that targets tumor cells. To this end, we synthesized a water-soluble β-cyclodextrin (β-CD) polymer conjugated with folate (FA), denoted PCD-FA, which is capable of forming inclusion complexes with ICG in water through host-guest interactions between the β-CD moieties and ICG molecules. The inclusion complexes formed by PCD-FA and ICG, called ICG@PCD-FA, dispersed stably in solution as colloidal nanoparticles, greatly improving the physical and optical properties of ICG by preventing ICG dimer formation, where ICG appeared as monomers and even J-aggregates. This resulted in stronger and more stable absorption at a longer wavelength of 900 nm, which may allow for deeper tissue penetration and imaging with reduced interference from biological tissues' autofluorescence. Moreover, ICG@PCD-FA showed a targeting effect on folate receptor-positive (FR+) tumor cells, which specifically highlighted FR+ cells via NIR endoscopic imaging. Notably, ICG@PCD-FA further improved permeation and accumulation in FR+ 3D tumor spheroids. Therefore, this ICG@PCD-FA supramolecular colloidal system may have a great potential for use in tumor NIR imaging and diagnostic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app