Add like
Add dislike
Add to saved papers

Z-Type Ligand Enables Efficient and Stable Deep-Blue Perovskite Light-Emitting Diodes.

During the synthesis of deep-blue perovskite quantum dots (PQDs), they generally emerge as a two-dimensional byproduct with poor yield and low photoluminescence quantum yield (PLQY) due to amine ligand enrichment-induced abundant surface defects. Herein, we provide a colloidal synthesis method to prepare deep-blue CsPbBr3 PQDs in a green nontoxic solvent via strategic Z-type ligand engineering. Z-type ligands of zinc octanoate enable the formation of robust coordination bonds with surface bromide ions of PQDs, maintaining acid-base equilibrium and reducing excess amine enrichment on the PQDs surface. Consequently, homogeneous and monodispersed PQDs with improved PLQY of 73% are successfully synthesized, achieving efficient deep-blue LEDs with a peak EQE of 5.46%, a maximum luminance of 847.6 cd/m2 , and an operational half-lifetime of 14 min. The devices exhibit color coordinates of (0.137, 0.049), closely approximating the Rec. 2020 blue standard. Our work offers a potentially eco-friendly and viable route for realizing high-performance LEDs in the deep-blue region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app