Add like
Add dislike
Add to saved papers

Optical signatures of thermal damage on ex-vivo brain, lung and heart tissues using time-domain diffuse optical spectroscopy.

Thermal therapies treat tumors by means of heat, greatly reducing pain, post-operation complications, and cost as compared to traditional methods. Yet, effective tools to avoid under- or over-treatment are mostly needed, to guide surgeons in laparoscopic interventions. In this work, we investigated the temperature-dependent optical signatures of ex-vivo calf brain, lung, and heart tissues based on the reduced scattering and absorption coefficients in the near-infrared spectral range (657 to 1107 nm). These spectra were measured by time domain diffuse optics, applying a step-like spatially homogeneous thermal treatment at 43 °C, 60 °C, and 80 °C. We found three main increases in scattering spectra, possibly due to the denaturation of collagen, myosin, and the proteins' secondary structure. After 75 °C, we found the rise of two new peaks at 770 and 830 nm in the absorption spectra due to the formation of a new chromophore, possibly related to hemoglobin or myoglobin. This research marks a significant step forward in controlling thermal therapies with diffuse optical techniques by identifying several key markers of thermal damage. This could enhance the ability to monitor and adjust treatment in real-time, promising improved outcomes in tumor therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app