Add like
Add dislike
Add to saved papers

Methanetriol─Formation of an Impossible Molecule.

Orthocarboxylic acids─organic molecules carrying three hydroxyl groups at the same carbon atom─have been distinguished as vital reactive intermediates by the atmospheric science and physical (organic) chemistry communities as transients in the atmospheric aerosol cycle. Predicted short lifetimes and their tendency to dehydrate to a carboxylic acid, free orthocarboxylic acids, signify one of the most elusive classes of organic reactive intermediates, with even the simplest representative methanetriol (CH(OH)3 )─historically known as orthoformic acid─not previously been detected experimentally. Here, we report the first synthesis of the previously elusive methanetriol molecule in low-temperature mixed methanol (CH3 OH) and molecular oxygen (O2 ) ices subjected to energetic irradiation. Supported by electronic structure calculations, methanetriol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies and the detection of photoionization fragments. The first synthesis and detection of methanetriol (CH(OH)3 ) reveals its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition. These findings progress our fundamental understanding of the chemistry and chemical bonding of methanetriol, hydroxyperoxymethane (CH3 OOOH), and hydroxyperoxymethanol (CH2 (OH)OOH), which are all prototype molecules in the oxidation chemistry of the atmosphere.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app