Add like
Add dislike
Add to saved papers

Organic-Inorganic Heterointerface-Expediting Electron Transfer Realizes Efficient Plasmonic Catalytic Sterilization via a Carbon-Dot Nanozyme.

Plasmonic nanozymes bring enticing prospects for catalytic sterilization by leveraging plasmon-engendered hot electrons. However, the interface between plasmons and nanozymes as the mandatory path of hot electrons receives little attention, and the mechanisms of plasmonic nanozymes still remain to be elucidated. Herein, a plasmonic carbon-dot nanozyme (FeCG) is developed by electrostatically assembling catalytic iron-doped carbon dots (Fe-CDs) with plasmonic gold nanorods. The energy harvesting and hot-electron migration are remarkably expedited by a spontaneous organic-inorganic heterointerface holding a Fermi level-induced interfacial electric field. The accumulated hot electrons are then fully utilized by conductive Fe-CDs to boost enzymatic catalysis toward overproduced reactive oxygen species. By synergizing with localized heating from hot-electron decay, FeCG achieves rapid and potent disinfection with an antibacterial efficiency of 99.6% on Escherichia coli within 5 min and is also effective (94.2%) against Staphylococcus aureus . Our work presents crucial insights into the organic-inorganic heterointerface in advanced plasmonic biocidal nanozymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app