Add like
Add dislike
Add to saved papers

Boosting Formate Electrooxidation by Heterostructured PtPd Alloy and Oxides Nanowires.

Advanced Materials 2024 April 17
Direct formate fuel cells (DFFCs) receive increasing attention as promising technologies for the future energy mix and environmental sustainability, as formate can be made from carbon dioxide utilization and is carbon neutral. Herein, heterostructured PtPd alloy and oxides nanowires (PtPd-ox NWs) with abundant defect sites are synthesized through a facile self-template method and demonstrated high activity towards formate electrooxidation reaction (FOR). The electronic tuning arising from the heterojunction between alloy and oxides influence the work function of PtPd-ox NWs. The sample with optimal work function reveals the favorable adsorption behavior for intermediates and strong interaction in the d-p orbital hybridization between Pt site and oxygen in formate, favoring the FOR direct pathway with a low energy barrier. Besides the thermodynamic regulation, the heterostructure can also provide sufficient hydroxyl species to facilitate the formation of carbon dioxide due to the ability of combining absorbed hydrogen and carbon monoxide at adjacent active sites, which contributes to the improvement of FOR kinetics on PtPd-ox NW. Thus, heterostructured PtPd-ox NWs achieve dual regulation of FOR thermodynamics and kinetics, exhibiting remarkable performance and demonstrating potential in practical systems. This article is protected by copyright. All rights reserved.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app