Journal Article
Review
Add like
Add dislike
Add to saved papers

Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples.

UNLABELLED: The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant's genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-024-01423-y.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app