Add like
Add dislike
Add to saved papers

Facet-Dependent Interfacial Charge Transfer between T-Phase VS 2 Nanoflakes and Rutile TiO 2 Single Crystals.

The hybridizations of two-dimensional (2D) metallic materials with semiconducting transition metal oxides (TMOs) register attractive heterojunctions, which can find various applications in photostimulated circumstances. In this work, we developed an ambient-pressure chemical vapor deposition method to directly grow T-VS2 on atomically smooth rutile TiO2 single crystals with different terminations and thus successfully constructed a heterojunction model of VS2 /TiO2 with a well-defined clean interface. Detailed measurements with Kelvin probe force microscopy revealed the facet-dependent charge transfer occurring at the VS2 /TiO2 interfaces, seeing variations not only in the amount and direction of the transferred electrons but also in the photoinduced surface potential changes and the dynamics of photogenerated charge carriers under ultraviolet irradiation. Interestingly, ultrathin T-VS2 was found with considerable magnetism at room temperature, disregarding the charge exchange with the TiO2 substrates. These results may bring deep insights into the photoinspired functionalities of the hybridized system combining metallic transition metal dichalcogenides and TMO materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app