We have located links that may give you full text access.
Application of AI in Sepsis: Citation Network Analysis and Evidence Synthesis.
Interactive Journal of Medical Research 2024 April 15
BACKGROUND: Artificial intelligence (AI) has garnered considerable attention in the context of sepsis research, particularly in personalized diagnosis and treatment. Conducting a bibliometric analysis of existing publications can offer a broad overview of the field and identify current research trends and future research directions.
OBJECTIVE: The objective of this study is to leverage bibliometric data to provide a comprehensive overview of the application of AI in sepsis.
METHODS: We conducted a search in the Web of Science Core Collection database to identify relevant articles published in English until August 31, 2023. A predefined search strategy was used, evaluating titles, abstracts, and full texts as needed. We used the Bibliometrix and VOSviewer tools to visualize networks showcasing the co-occurrence of authors, research institutions, countries, citations, and keywords.
RESULTS: A total of 259 relevant articles published between 2014 and 2023 (until August) were identified. Over the past decade, the annual publication count has consistently risen. Leading journals in this domain include Critical Care Medicine (17/259, 6.6%), Frontiers in Medicine (17/259, 6.6%), and Scientific Reports (11/259, 4.2%). The United States (103/259, 39.8%), China (83/259, 32%), United Kingdom (14/259, 5.4%), and Taiwan (12/259, 4.6%) emerged as the most prolific countries in terms of publications. Notable institutions in this field include the University of California System, Emory University, and Harvard University. The key researchers working in this area include Ritankar Das, Chris Barton, and Rishikesan Kamaleswaran. Although the initial period witnessed a relatively low number of articles focused on AI applications for sepsis, there has been a significant surge in research within this area in recent years (2014-2023).
CONCLUSIONS: This comprehensive analysis provides valuable insights into AI-related research conducted in the field of sepsis, aiding health care policy makers and researchers in understanding the potential of AI and formulating effective research plans. Such analysis serves as a valuable resource for determining the advantages, sustainability, scope, and potential impact of AI models in sepsis.
OBJECTIVE: The objective of this study is to leverage bibliometric data to provide a comprehensive overview of the application of AI in sepsis.
METHODS: We conducted a search in the Web of Science Core Collection database to identify relevant articles published in English until August 31, 2023. A predefined search strategy was used, evaluating titles, abstracts, and full texts as needed. We used the Bibliometrix and VOSviewer tools to visualize networks showcasing the co-occurrence of authors, research institutions, countries, citations, and keywords.
RESULTS: A total of 259 relevant articles published between 2014 and 2023 (until August) were identified. Over the past decade, the annual publication count has consistently risen. Leading journals in this domain include Critical Care Medicine (17/259, 6.6%), Frontiers in Medicine (17/259, 6.6%), and Scientific Reports (11/259, 4.2%). The United States (103/259, 39.8%), China (83/259, 32%), United Kingdom (14/259, 5.4%), and Taiwan (12/259, 4.6%) emerged as the most prolific countries in terms of publications. Notable institutions in this field include the University of California System, Emory University, and Harvard University. The key researchers working in this area include Ritankar Das, Chris Barton, and Rishikesan Kamaleswaran. Although the initial period witnessed a relatively low number of articles focused on AI applications for sepsis, there has been a significant surge in research within this area in recent years (2014-2023).
CONCLUSIONS: This comprehensive analysis provides valuable insights into AI-related research conducted in the field of sepsis, aiding health care policy makers and researchers in understanding the potential of AI and formulating effective research plans. Such analysis serves as a valuable resource for determining the advantages, sustainability, scope, and potential impact of AI models in sepsis.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app