Add like
Add dislike
Add to saved papers

Lithium-ion battery electrode properties of hydrogen boride.

Recently, hydrogen boride (HB) with a pseudo-two-dimensional sheet structure was successfully synthesized, and it is theoretically predicted to have high potential as a negative electrode material for alkali metal ion batteries, making it a promising new candidate. This study represents the first experimental examination of the negative electrode properties of HB. HB was synthesized via cation exchange from MgB2 . The confirmation of HB synthesis was achieved through various spectroscopic experiments, including synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy, in addition to direct observation using transmission electron microscopy. The HB electrode was prepared by mixing the HB powder sample with conductive additive carbon black and a polymer binder. A test cell was assembled with the HB electrode as the working electrode, and lithium metal as the counter and reference electrodes, and its battery electrode properties were evaluated. Although reversible charge-discharge curves with good reversibility were observed, the reversible capacity was 100 ± 20 mA h g-1 which is significantly smaller than the theoretical predictions. Nitrogen gas adsorption experiments were performed on the HB powder sample to determine the specific surface area indicating that the HB sheets were stacked together. It is plausible to consider that this stacking structure led to a reduced lithium-ion storage capacity compared to the theoretical predictions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app