Add like
Add dislike
Add to saved papers

Unveiling activation mechanism of persulfate by homologous hemp-derived biochar catalysts for enhanced tetracycline wastewater remediation.

Advancements in biochar activating persulfate advanced oxidation processes (PS-AOP), have gained significant attention. However, the understanding of biochar-based catalysts in activating PS remains limited. Herein, biochar (BC) and N-doped biochar (NBC) were synthesized from hemp for activating PS to treat tetracycline (TC) wastewater and analyzed their mechanisms separately. Surprisingly, N-doped in biochar leads to a change in the activation mechanism of PS. The BC-PS system operates mainly through a radical pathway, advantageous for treating soil organic pollution (68%) with pH adaptability (less than 10% variation). Nevertheless, the NBC-PS system primarily employs an electron transfer non-radical pathway, demonstrating stability (only 7% performance degradation over four cycles) and enhanced resistance to anionic interference (less than 10% variation) in organic wastewater treatment. This study provides a technical reference and theoretical foundation for enhancing biochar activation of PS in the removal of organic pollutants from aquatic and terrestrial environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app