Add like
Add dislike
Add to saved papers

Structure and Ultrafast X-ray Diffraction of the Hydrated Metaphosphate.

We study the pathway of metaphosphate hydration when a metaphosphate anion is dissolved in liquid water with an explicit water model. For this purpose, we propose a sequential Monte Carlo algorithm incorporated with the ab initio quantum mechanics/molecular mechanics (QM/MM) method, which can reduce the amount of ab initio QM/MM sampling while retaining the accuracy of the simulation. We demonstrate the numerical calculation of the standard enthalpy change for the successive addition reaction PO3 - ·2H2 O + H2 O ⇌ PO3 - ·3H2 O in the liquid phase, which helps to clarify the hydration pathway of the metaphosphate. With the obtained hydrated structure of the metaphosphate anion, we perform ab initio calculations for its relaxation dynamics upon vibrational excitation and characterize the energy transfer process in solution with simulated ultrafast X-ray diffraction signals, which can be experimentally implemented with X-ray free-electron lasers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app