Add like
Add dislike
Add to saved papers

OH-Formation following vibrationally induced reaction dynamics of H 2 COO.

The reaction dynamics of H2 COO to form HCOOH and dioxirane as first steps for OH-elimination is quantitatively investigated. Using a machine learned potential energy surface (PES) at the CASPT2/aug-cc-pVTZ level of theory vibrational excitation along the CH-normal mode ν CH with energies up to 40.0 kcal mol-1 (∼5 ν CH ) leads almost exclusively to HCOOH which further decomposes into OH + HCO. Although the barrier to form dioxirane is only 21.4 kcal mol-1 the reaction probability to form dioxirane is two orders of magnitude lower if the CH-stretch mode is excited. Following the dioxirane-formation pathway is facile, however, if the COO-bend vibration is excited together with energies equivalent to ∼2 ν CH or ∼3 ν COO . For OH-formation in the atmosphere the pathway through HCOOH is probably most relevant because the alternative pathways (through dioxirane or formic acid) involve several intermediates that can de-excite through collisions, relax via internal vibrational relaxation (IVR), or pass through loose and vulnerable transition states (formic acid). This work demonstrates how, by selectively exciting particular vibrational modes, it is possible to dial into desired reaction channels with a high degree of specificity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app