Add like
Add dislike
Add to saved papers

EphB1 causes retinal damage through inflammatory pathways in the retina and retinal Müller cells.

PURPOSE: To examine whether increased ephrin type-B receptor 1 (EphB1) leads to inflammatory mediators in retinal Müller cells.

METHODS: Diabetic human and mouse retinal samples were examined for EphB1 protein levels. Rat Müller cells (rMC-1) were grown in culture and treated with EphB1 siRNA or ephrin B1-Fc to explore inflammatory mediators in cells grown in high glucose. An EphB1 overexpression adeno-associated virus (AAV) was used to increase EphB1 in Müller cells in vivo. Ischemia/reperfusion (I/R) was performed on mice treated with the EphB1 overexpression AAV to explore the actions of EphB1 on retinal neuronal changes in vivo.

RESULTS: EphB1 protein levels were increased in diabetic human and mouse retinal samples. Knockdown of EphB1 reduced inflammatory mediator levels in Müller cells grown in high glucose. Ephrin B1-Fc increased inflammatory proteins in rMC-1 cells grown in normal and high glucose. Treatment of mice with I/R caused retinal thinning and loss of cell numbers in the ganglion cell layer. This was increased in mice exposed to I/R and treated with the EphB1 overexpressing AAVs.

CONCLUSIONS: EphB1 is increased in the retinas of diabetic humans and mice and in high glucose-treated Müller cells. This increase leads to inflammatory proteins. EphB1 also enhanced retinal damage in response to I/R. Taken together, inhibition of EphB1 may offer a new therapeutic option for diabetic retinopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app