Add like
Add dislike
Add to saved papers

Metastability of Protein Solution Structures in the Absence of a Solvent: Rugged Energy Landscape and Glass-like Behavior.

Native ion mobility/mass spectrometry is well-poised to structurally screen proteomes but characterizes protein structures in the absence of a solvent. This raises long-standing unanswered questions about the biological significance of protein structures identified through ion mobility/mass spectrometry. Using newly developed computational and experimental ion mobility/ion mobility/mass spectrometry methods, we investigate the unfolding of the protein ubiquitin in a solvent-free environment. Our data suggest that the folded, solvent-free ubiquitin observed by ion mobility/mass spectrometry exists in a largely native fold with an intact β-grasp motif and α-helix. The ensemble of folded, solvent-free ubiquitin ions can be partitioned into kinetically stable subpopulations that appear to correspond to the structural heterogeneity of ubiquitin in solution. Time-resolved ion mobility/ion mobility/mass spectrometry measurements show that folded, solvent-free ubiquitin exhibits a strongly stretched-exponential time dependence, which simulations trace to a rugged energy landscape with kinetic traps. Unfolding rate constants are estimated to be approximately 800 to 20,000 times smaller than in the presence of water, effectively quenching the unfolding process on the time scale of typical ion mobility/mass spectrometry measurements. Our proposed unfolding pathway of solvent-free ubiquitin shares substantial characteristics with that established for the presence of solvent, including a polarized transition state with significant native content in the N-terminal β-hairpin and α-helix. Our experimental and computational data suggest that (1) the energy landscape governing the motions of folded, solvent-free proteins is rugged in analogy to that of glassy systems; (2) large-scale protein motions may at least partially be determined by the amino acid sequence of a polypeptide chain; and (3) solvent facilitates, rather than controls, protein motions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app