Add like
Add dislike
Add to saved papers

Multi-scale feature aggregation and fusion network with self-supervised multi-level perceptual loss for textures preserving low-dose CT denoising.

OBJECTIVE: The textures and detailed structures in computed tomography (CT) images are highly desirable for clinical diagnosis. This study aims to expand the current body of work on textures and details preserving convolutional neural networks for low-dose CT (LDCT) image denoising task.

APPROACH: This study proposed a novel Multi-scale Feature Aggregation and Fusion network (MFAF-net) for LDCT image denoising. Specifically, we proposed a Multi-scale Residual Feature Aggregation Module (MRFAM) to characterize multi-scale structural information in CT images, which captures regional-specific inter-scale variations using learned weights. We further proposed a Cross-level Feature Fusion Module (CFFM) to integrate cross-level features, which adaptively weights the contributions of features from encoder to decoder by using a Spatial Pyramid Attention (SPA) mechanism. Moreover, we proposed a Self-supervised Multi-level Perceptual Loss Module (SMPLM) to generate multi-level auxiliary perceptual supervision for recovery of salient textures and structures of tissues and lesions in CT images, which takes advantage of abundant semantic information at various levels. We introduced parameters for the perceptual loss to adaptively weight the contributions of auxiliary features of different levels and we also introduced an automatic parameter tuning strategy for these parameters.

MAIN RESULTS: Extensive experimental studies were performed to validate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method can achieve better performance on both fine textures preservation and noise suppression for CT image denoising task compared with other competitive CNN based methods.

SIGNIFICANCE: The proposed MFAF-net takes advantage of multi-scale receptive fields, cross-level features integration and self-supervised multi-level perceptual loss, enabling more effective recovering of fine textures and detailed structures of tissues and lesions in CT images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app