Add like
Add dislike
Add to saved papers

Multiview Tensor Spectral Clustering via Co-regularization.

Graph-based multi-view clustering encodes multi-view data into sample affinities to find consensus representation, effectively overcoming heterogeneity across different views. However, traditional affinity measures tend to collapse as the feature dimension expands, posing challenges in estimating a unified alignment that reveals both crossview and inner relationships. To tackle this challenge, we propose to achieve multi-view uniform clustering via consensus representation coregularization. First, the sample affinities are encoded by both popular dyadic affinity and recent high-order affinities to comprehensively characterize spatial distributions of the HDLSS data. Second, a fused consensus representation is learned through aligning the multi-view lowdimensional representation by co-regularization. The learning of the fused representation is modeled by a high-order eigenvalue problem within manifold space to preserve the intrinsic connections and complementary correlations of original data. A numerical scheme via manifold minimization is designed to solve the high-order eigenvalue problem efficaciously. Experiments on eight HDLSS datasets demonstrate the effectiveness of our proposed method in comparison with the recent thirteen benchmark methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app