Add like
Add dislike
Add to saved papers

Exercise-induced β2-adrenergic receptor activation enhances the anti-leukemic activity of expanded γδ T-Cells via DNAM-1 upregulation and PVR/Nectin-2 recognition.

Cancer Res Commun 2024 April 10
Exercise mobilizes cytotoxic lymphocytes to blood which may allow superior cell products to be manufactured for cancer therapy. Gamma-Delta (γδ) T-cells have shown promise for treating solid tumors, but there is a need to increase their potency against hematologic malignancies. Here, we show that human γδ T-cells mobilized to blood in response to just 20-minutes of graded exercise have surface phenotypes and transcriptomic profiles associated with cytotoxicity, adhesion, migration and cytokine signaling. Following 14-days ex vivo expansion with zoledronic acid and interleukin (IL)-2, exercise mobilized γδ T-cells had surface phenotypes and transcriptomic profiles associated with enhanced effector functions, and demonstrated superior cytotoxic activity against multiple hematologic tumors in vitro, and in vivo in leukemia bearing xenogeneic mice. Infusing humans with the β1+β2-agonist isoproterenol and administering β1 or β1+β2 antagonists prior to exercise revealed these effects to be β2-adrenergic receptor (AR) dependent. Antibody blocking of DNAM-1 on expanded γδ T-cells, as well as the DNAM-1 ligands PVR and Nectin-2 on leukemic targets, abolished the enhanced anti-leukemic effects of exercise. These findings provide a mechanistic link between exercise, β2-AR activation, and the manufacture of superior γδ T-cell products for adoptive cell therapy against hematological malignancies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app