Add like
Add dislike
Add to saved papers

Antioxidant and inflammatory-modulating properties of ginger and bitterleaf teas.

The present study evaluated the effects of ginger and bitterleaf tea infusions on redox and inflammatory balance in rats. Twenty-four Wistar rats with weights of between 160 and 180 g were assigned into four (4) groups (n = 6). The control group received distilled water, while the remaining groups were administered tea infusions of ginger, bitterleaf, or a combination of both at 5 mg/mL, respectively. Bitterleaf and ginger teas elevated the levels of superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione in rat plasma and liver, while malondialdehyde levels decreased. Furthermore, ginger tea caused an increase in the expression of nuclear factor erythroid-2-related factor 2 (Nrf-2) and reduced tumor necrosis factor alpha (TNF-α). The GC-MS analysis of the teas identified 77 chemical compounds, among which gingerol and precocene I were predominant. Collectively, the findings indicate, in particular, that ginger tea may boost antioxidant and anti-inflammatory capacity by increasing Nrf-2 levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app