Add like
Add dislike
Add to saved papers

Effects of morphine on conditioned place preference and pain are independent of uptake‑2.

Morphine changes neurotransmitter release, including norepinephrine, dopamine, and serotonin. Decynium‑22 (D22) inhibits an alternative neurotransmitter removal pathway, namely uptake‑2. Uptake‑2 includes plasma membrane monoamine transporter (PMAT) and organic cation transporters that have a low affinity, but high capacity for uptake of various monoamines such as norepinephrine, dopamine, and serotonin. This study was done to assess the effect of uptake‑2 inhibition on morphine‑induced conditioned place preference (CPP) and analgesia. In this study, the effects of morphine and/or D22 on CPP were evaluated following intraperitoneal injection in mice. Afterward, changes in motor activity were evaluated by the open field test. Using the tail‑flick model, the effects of D22 and/or morphine were evaluated on the pain threshold. The results showed that 20 mg/kg of morphine induced a place preference response. D22, at the dose of 0.03 mg/kg, caused place avoidance, while at the dose of 0.3 mg/kg, it produced a notable place preference response. Co‑administration of D22 and morphine showed that morphine reversed the CPP aversion induced by D22 at the lowest dose. Motor activity did not alter. In the tail‑flick test, morphine, at the dose of 3 mg/kg but not 1 mg/kg, increased the pain threshold. D22 induced significant analgesic responses. Co‑administration of D22 and morphine caused considerable analgesic effects. The findings revealed that D22 induced both conditioned aversion and preference depending on the dose while morphine induced CPP. Both drugs produced analgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app