We have located links that may give you full text access.
Semiology and Neurophysiology of Clonic Seizures: A Report of 39 Patients.
Neurology. Clinical Practice 2024 April
BACKGROUND AND OBJECTIVES: Clonic seizures are currently defined as repetitive and rhythmic myoclonic contractions of a specific body part, producing twitching movements at a frequency of 0.2-5 Hz. There are few studies in the literature that have reported a detailed analysis of the semiology, neurophysiology, and lateralizing value of clonic seizures. In this article, we aim to report our findings from a retrospective review of 39 patients.
METHODS: We identified 39 patients (48 seizures) from our center who had been admitted with clonic seizures between 2016 and 2022. We performed a retrospective review of their video-EEG recordings for semiology and ictal EEG findings. Seventeen patients also had simultaneous surface-EMG (sEMG) electrodes placed on affected body parts, which were analyzed as well.
RESULTS: The most common initial affected body parts were face, arm, and hand. In most of the cases, seizures propagated from lower face to upper face and distal hand to proximal arm. The most common seizure-onset zone was the perirolandic region, and the most common EEG seizure pattern was paroxysmal rhythmic monomorphic activity. The lateralizing value for EEG seizure onset to contralateral hemisphere in unilateral clonic seizures (n = 39) was 100%. All seizures recorded with sEMG electrodes demonstrated synchronous brief tetanic contractions of agonists and antagonists, alternating with synchronous silent periods. Arrhythmic clonic seizures were associated with periodic epileptiform discharges on the EEG, whereas rhythmic clonic seizures were associated with paroxysmal rhythmic monomorphic activity. Overall, the most common etiology was cerebrovascular injuries, followed by tumors.
DISCUSSION: Clonic seizures are characterized by synchronized brief tetanic contractions of agonist and antagonistic muscles alternating with synchronized silent periods, giving rise to the visible twitching. The most common seizure onset zone is in the perirolandic region, which is consistent with the symptomatogenic zone being in the primary motor area. The lateralizing value of unilateral clonic seizures for seizure onset in the contralateral hemisphere is 100%.
METHODS: We identified 39 patients (48 seizures) from our center who had been admitted with clonic seizures between 2016 and 2022. We performed a retrospective review of their video-EEG recordings for semiology and ictal EEG findings. Seventeen patients also had simultaneous surface-EMG (sEMG) electrodes placed on affected body parts, which were analyzed as well.
RESULTS: The most common initial affected body parts were face, arm, and hand. In most of the cases, seizures propagated from lower face to upper face and distal hand to proximal arm. The most common seizure-onset zone was the perirolandic region, and the most common EEG seizure pattern was paroxysmal rhythmic monomorphic activity. The lateralizing value for EEG seizure onset to contralateral hemisphere in unilateral clonic seizures (n = 39) was 100%. All seizures recorded with sEMG electrodes demonstrated synchronous brief tetanic contractions of agonists and antagonists, alternating with synchronous silent periods. Arrhythmic clonic seizures were associated with periodic epileptiform discharges on the EEG, whereas rhythmic clonic seizures were associated with paroxysmal rhythmic monomorphic activity. Overall, the most common etiology was cerebrovascular injuries, followed by tumors.
DISCUSSION: Clonic seizures are characterized by synchronized brief tetanic contractions of agonist and antagonistic muscles alternating with synchronized silent periods, giving rise to the visible twitching. The most common seizure onset zone is in the perirolandic region, which is consistent with the symptomatogenic zone being in the primary motor area. The lateralizing value of unilateral clonic seizures for seizure onset in the contralateral hemisphere is 100%.
Full text links
Related Resources
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app