Add like
Add dislike
Add to saved papers

Primary nasal viral infection rewires the tissue-scale memory response.

bioRxiv 2024 March 19
The nasal mucosa is frequently the initial site of respiratory viral infection, replication, and transmission. Recent work has started to clarify the independent responses of epithelial, myeloid, and lymphoid cells to viral infection in the nasal mucosa, but their spatiotemporal coordination and relative contributions remain unclear. Furthermore, understanding whether and how primary infection shapes tissue-scale memory responses to secondary challenge is critical for the rational design of nasal-targeting therapeutics and vaccines. Here, we generated a single-cell RNA-sequencing (scRNA-seq) atlas of the murine nasal mucosa sampling three distinct regions before and during primary and secondary influenza infection. Primary infection was largely restricted to respiratory mucosa and induced stepwise changes in cell type, subset, and state composition over time. Type I Interferon (IFN)-responsive neutrophils appeared 2 days post infection (dpi) and preceded transient IFN-responsive/cycling epithelial cell responses 5 dpi, which coincided with broader antiviral monocyte and NK cell accumulation. By 8 dpi, monocyte-derived macrophages (MDMs) expressing Cxcl9 and Cxcl16 arose alongside effector cytotoxic CD8 and Ifng -expressing CD4 T cells. Following viral clearance (14 dpi), rare, previously undescribed K rt13+ n asal i mmune- i nteracting f loor e pithelial (KNIIFE) cells expressing multiple genes with immune communication potential increased concurrently with tissue-resident memory T (TRM)-like cells and early IgG+/IgA+ plasmablasts. Proportionality analysis coupled with cell-cell communication inference, alongside validation by in situ microscopy, underscored the CXCL16-CXCR6 signaling axis between MDMs and effector CD8 T cells 8dpi and KNIIFE cells and TRM cells 14 dpi. Secondary influenza challenge with a homologous or heterologous strain administered 60 dpi induced an accelerated and coordinated myeloid and lymphoid response without epithelial proliferation, illustrating how tissue-scale memory to natural infection engages both myeloid and lymphoid cells to reduce epithelial regenerative burden. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses upon rechallenge.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app