Add like
Add dislike
Add to saved papers

Deletion of arrestin-3 does not improve compulsive drug-seeking behavior in a longitudinal paradigm of oral morphine self-administration.

bioRxiv 2024 March 23
Opioid drugs are potent analgesics that mimic the endogenous opioid peptides, endorphins and enkephalins, by activating the µ-opioid receptor. Opioid use is limited by side effects, including significant risk of opioid use disorder. Improvement of the effect/side effect profile of opioid medications is a key pursuit of opioid research, yet there is no consensus on how to achieve this goal. One hypothesis is that the degree of arrestin-3 recruitment to the µ-opioid receptor impacts therapeutic utility. However, it is not clear whether increased or decreased interaction of the µ-opioid receptor with arrestin-3 would reduce compulsive drug-seeking. To examine this question, we utilized three genotypes of mice with varying abilities to recruit arrestin-3 to the µ-opioid receptor in response to morphine in a novel longitudinal operant self-administration model. We demonstrate that arrestin-3 knockout and wild type mice have highly variable drug-seeking behavior with few genotype differences. In contrast, in mice where the µ-opioid receptor strongly recruits arrestin-3, drug-seeking behavior is much less varied. We created a quantitative method to define compulsivity in drug-seeking and found that mice lacking arrestin-3 were more likely to meet the criteria for compulsivity whereas mice with enhanced arrestin-3 recruitment did not develop a compulsive phenotype. Our data suggest that opioids that engage both G protein and arrestin-3, recapitulating the endogenous signaling pattern, will reduce abuse liability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app