Add like
Add dislike
Add to saved papers

Selective CO 2 Capture from CO 2 /N 2 Gas Mixtures Utilizing Tetrabutylammonium Fluoride Hydrates.

Gas hydrates, a type of inclusion compound capable of trapping gas molecules within a lattice structure composed of water molecules, are gaining attention as an environmentally benign gas storage or separation platform. In general, the formation of gas hydrates from water requires high-pressure and low-temperature conditions, resulting in significant energy consumption. In this study, tetrabutylammonium fluoride (TBAF) was utilized as a thermodynamic promoter forming a semi-clathrate-type hydrate, enabling gas capture or separation at room temperature. Those TBAF hydrate systems were explored to check their capability of CO2 separation from flue gas, the mixture of CO2 and N2 gases. The formation rates and gas storage capacities of TBAF hydrates were systematically investigated under various concentrations of CO2 , and they presented selective CO2 capture behavior during the hydrate formation process. The maximum gas storage capacities were achieved at 2.36 and 2.38 mmol/mol for TBAF·29.7 H2 O and TBAF·32.8 H2 O hydrate, respectively, after the complete enclathration of the feed gas of CO2 (80%) + N2 (20%). This study provides sufficient data to support the feasibility of TBAF hydrate systems to be applied to CO2 separation from CO2 /N2 gas mixtures based on their CO2 selectivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app