Add like
Add dislike
Add to saved papers

IC Packaging Material Identification via a Hybrid Deep Learning Framework with CNN-Transformer Bidirectional Interaction.

Micromachines 2024 March 22
With the advancement of micro- and nanomanufacturing technologies, electronic components and chips are increasingly being miniaturized. To automatically identify their packaging materials for ensuring the reliability of ICs, a hybrid deep learning framework termed as CNN-transformer interaction (CTI) model is designed on IC packaging images in this paper, in which several cascaded CTI blocks are designed to bidirectionally capture local and global features from the IC packaging image. Each CTI block involves a CNN branch with two designed convolutional neural networks (CNNs) for CNN local features and a transformer branch with two transformers for transformer global features and transformer local-window features. A bidirectional interaction mechanism is designed to interactively transfer the features in channel and spatial dimensions between the CNNs and transformers. Experimental results indicate that the hybrid framework can recognize three types of IC packaging materials with a good performance of 96.16% F1-score and 97.92% accuracy, which is superior to some existing deep learning methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app