Add like
Add dislike
Add to saved papers

Degradation of Stains from Metal Surfaces Using a DBD Plasma Microreactor.

Micromachines 2024 Februrary 22
The surface cleaning of metals plays a pivotal role in ensuring their overall performance and functionality. Dielectric barrier discharge (DBD) plasma, due to its unique properties, has been considered to be a good alternative to traditional cleaning methods. The confinement of DBD plasma in microreactors brings additional benefits, including excellent stability at high pressures, enhanced density of reactive species, reduced safety risks, and less gas and energy consumption. In the present work, we demonstrated a DBD plasma-based method for the degradation of stains from metal surfaces in a microreactor. Aluminum plates with capsanthin stains were used to investigate the influence of operational parameters on the decolorization efficiency, including plasma discharge power, plasma processing time, and O2 content in the atmosphere. The results revealed that an increase in plasma discharge power and plasma processing time together with an appropriate amount of O2 in the atmosphere promote the degradation of capsanthin stains. The optimum processing condition was determined to be the following: plasma power of 11.3 W, processing time of 3 min, and Ar/O2 flow rate of 48/2 sccm. The evolution of composition, morphology, bonding configuration, and wettability of aluminum plates with capsanthin and lycopene stains before and after plasma treatment were systematically investigated, indicating DBD plasma can efficiently degrade stains from the surface of metals without damage. On this basis, the DBD plasma cleaning approach was extended to degrade rhodamine B and malachite green stains from different metals, suggesting it has good versatility. Our work provides a simple, efficient, and solvent-free approach for the surface cleaning of metals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app