Add like
Add dislike
Add to saved papers

Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data.

Genes 2024 March 12
With a rich breeding history, Nanyang cattle (NY cattle) have undergone extensive natural and artificial selection, resulting in distinctive traits such as high fertility, excellent meat quality, and disease resistance. This makes them an ideal model for studying the mechanisms of environmental adaptability. To assess the population structure and genetic diversity of NY cattle, we performed whole-genome resequencing on 30 individuals. These data were then compared with published whole-genome resequencing data from 432 cattle globally. The results indicate that the genetic structure of NY cattle is significantly different from European commercial breeds and is more similar to North-Central Chinese breeds. Furthermore, among all breeds, NY cattle exhibit the highest genetic diversity and the lowest population inbreeding levels. A genome-wide selection signal analysis of NY cattle and European commercial breeds using Fst, θπ-ratio, and θπ methods revealed significant selection signals in genes associated with reproductive performance and immunity. Our functional annotation analysis suggests that these genes may be responsible for reproduction ( MAP2K2 , PGR , and GSE1 ), immune response ( NCOA2 , HSF1 , and PAX5 ), and olfaction ( TAS1R3 ). We provide a comprehensive overview of sequence variations in the NY cattle genome, revealing insights into the population structure and genetic diversity of NY cattle. Additionally, we identify candidate genes associated with important economic traits, offering valuable references for future conservation and breeding efforts of NY cattle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app