Add like
Add dislike
Add to saved papers

Optimising total knee replacement imaging: a novel 3D printed PET/CT anthropomorphic phantom for metal artefact simulation.

EJNMMI Physics 2024 March 29
PURPOSE: Arthroplasty phantoms, including total knee replacement (TKR) phantoms, have been frequently used to test metal artefact reduction methods applied to positron emission tomography/computed tomography (PET/CT) images. These phantoms generally simulate either simple anatomical features or simple activity distribution around the metal inserts in the PET/CT scans. 3D printing has been used recently to fabricate fillable anthropomorphic phantoms that accurately simulate volume and geometry. This study aims to describe the process of image segmentation, phantom modelling, 3D printing and validation of a population-based fillable TKR phantom that simulates human TKR PET/CT metal artefacts.

METHODS: 10 participants (5 male and 5 female) were scanned using 3T MRI and the images were segmented to create average male and average female 3D knee models, inversely with void cortical and porous trabecular compartments for 3D printing and contrast media. Virtual total knee replacement (TKR) surgery was implemented on these models to prepare the insertion locations for knee prosthetic implants. Subsequently, TKR models were printed using a 3D photopolymer resin printer and then injected with normal saline to test the phantoms for any leaks. Subsequently, diluted iodinated contrast media was injected into the cortical compartment and saline with 18 F-FDG was injected into the trabecular compartment and the phantom was scanned with PET/CT. The images were then evaluated and compared to the human knee radiographic features reported in the literature.

RESULTS: Phantoms were shown to be fluid-tight with distinct compartments. They showed comparable volume and geometry to the segmented human MRI knees. The phantoms demonstrated similar values for x-ray attenuation and Hounsfield units (HU) to the literature for both cortical and trabecular compartments. The phantoms displayed a uniform distribution for the radioactive tracer, resembling that seen in human trabecular bone PET. TKR phantom PET/CT images with metal inserts replicated the clinical metal artefacts seen clinically in the periprosthetic area.

CONCLUSION: This novel, 3D-printed, and customisable phantom effectively mimics the geometric, radiographic and radiotracer distribution features of real TKRs. Importantly, it simulates TKR image metal artefacts, making it suitable for repeatable and comprehensive evaluation of various metal artefact reduction methods in future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app