Add like
Add dislike
Add to saved papers

Enhanced Salt Removal of Fresh Water by Recovery-Reduced Ion Concentration Polarization Desalination.

Membranes 2024 Februrary 22
Here, we examine electromembrane systems for low-concentration desalination applicable to ultrapure water production. In addition to electrodialysis and ion concentration polarization (ICP) desalination, we propose a recovery-reduced ICP strategy for reducing the width of the desalted outlet for a higher salt removal ratio (SRR). The correlation between conductivity changes and thickness of the ion depletion zone is identified for electrodialysis, ICPH (1:1), and ICPQ (3:1) with a low-concentration feed solution (10 mM, 1 mM, 0.1 mM NaCl). Based on the experimental results, the scaling law and SRR for the electroconvection zone are summarized, and current efficiency (CE) and energy per ion removal (EPIR) depending on SRR are also discussed. As a result, the SRR of electrodialysis is mostly around 50%, but that of recovery-reduced ICP desalination is observed up to 99% under similar operating conditions. Moreover, at the same SRR, the CE of recovery-reduced ICP is similar to that of electrodialysis, but the EPIR is calculated to be lower than that of electrodialysis. Considering that forming an ion depletion zone up to half the channel width in the electromembrane system typically requires much power consumption, an ICP strategy that can adjust the width of the desalted outlet for high SRR can be preferable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app