Add like
Add dislike
Add to saved papers

Locating Transition States by Variational Reaction Path Optimization with an Energy-Derivative-Free Objective Function.

Locating transition states is essential for understanding molecular reactions. We propose a double-ended transition state search method by revisiting a variational reaction path optimization method known as the MaxFlux method. Although its original purpose is to add temperature effects to reaction paths, we conversely let the temperature approach zero to obtain an asymptotically exact minimum energy path and its corresponding transition state in variational formalism with an energy-derivative-free objective function. Using several numerical techniques to directly optimize the objective function, the present method reliably finds transition states with low computational cost. In particular, only three force evaluations per iteration are sufficient. This is confirmed on a variety of molecular reactions where the nudged elastic band method often fails. The present method is implemented in Python using the Atomic Simulation Environment and is available on GitHub.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app