Add like
Add dislike
Add to saved papers

Semi-supervised learning towards automated segmentation of PET images with limited annotations: application to lymphoma patients.

Manual segmentation poses a time-consuming challenge for disease quantification, therapy evaluation, treatment planning, and outcome prediction. Convolutional neural networks (CNNs) hold promise in accurately identifying tumor locations and boundaries in PET scans. However, a major hurdle is the extensive amount of supervised and annotated data necessary for training. To overcome this limitation, this study explores semi-supervised approaches utilizing unlabeled data, specifically focusing on PET images of diffuse large B-cell lymphoma (DLBCL) and primary mediastinal large B-cell lymphoma (PMBCL) obtained from two centers. We considered 2-[18 F]FDG PET images of 292 patients PMBCL (n = 104) and DLBCL (n = 188) (n = 232 for training and validation, and n = 60 for external testing). We harnessed classical wisdom embedded in traditional segmentation methods, such as the fuzzy clustering loss function (FCM), to tailor the training strategy for a 3D U-Net model, incorporating both supervised and unsupervised learning approaches. Various supervision levels were explored, including fully supervised methods with labeled FCM and unified focal/Dice loss, unsupervised methods with robust FCM (RFCM) and Mumford-Shah (MS) loss, and semi-supervised methods combining FCM with supervised Dice loss (MS + Dice) or labeled FCM (RFCM + FCM). The unified loss function yielded higher Dice scores (0.73 ± 0.11; 95% CI 0.67-0.8) than Dice loss (p value < 0.01). Among the semi-supervised approaches, RFCM + αFCM (α = 0.3) showed the best performance, with Dice score of 0.68 ± 0.10 (95% CI 0.45-0.77), outperforming MS + αDice for any supervision level (any α) (p < 0.01). Another semi-supervised approach with MS + αDice (α = 0.2) achieved Dice score of 0.59 ± 0.09 (95% CI 0.44-0.76) surpassing other supervision levels (p < 0.01). Given the time-consuming nature of manual delineations and the inconsistencies they may introduce, semi-supervised approaches hold promise for automating medical imaging segmentation workflows.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app