Add like
Add dislike
Add to saved papers

Schottky infrared detectors with optically tunable barriers beyond the internal photoemission limit.

The innovation. 2024 May 7
Internal photoemission is a prominent branch of the photoelectric effect and has emerged as a viable method for detecting photons with energies below the semiconductor bandgap. This breakthrough has played a significant role in accelerating the development of infrared imaging in one chip with state-of-the-art silicon techniques. However, the performance of these Schottky infrared detectors is currently hindered by the limit of internal photoemission; specifically, a low Schottky barrier height is inevitable for the detection of low-energy infrared photons. Herein, a distinct paradigm of Schottky infrared detectors is proposed to overcome the internal photoemission limit by introducing an optically tunable barrier. This device uses an infrared absorbing material-sensitized Schottky diode, assisted by the highly adjustable Fermi level of graphene, which subtly decouples the photon energy from the Schottky barrier height. Correspondingly, a broadband photoresponse spanning from ultraviolet to mid-wave infrared is achieved, with a high specific detectivity of 9.83 × 1010 cm Hz1/2 W-1 at 2,700 nm and an excellent specific detectivity of 7.2 × 109 cm Hz1/2 W-1 at room temperature under blackbody radiation. These results address a key challenge in internal photoemission and hold great promise for the development of the Schottky infrared detector with high sensitivity and room temperature operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app