Add like
Add dislike
Add to saved papers

Conversion of Layered WS 2 Crystals into Mixed-Domain Electrochemical Catalysts by Plasma-Assisted Surface Reconstruction.

Advanced Materials 2024 March 22
Electrocatalytic water splitting is crucial to generate clean hydrogen fuel, but implementation at an industrial scale remains limited due to dependence on expensive platinum (Pt)-based electrocatalysts. Here, an all-dry process to transform electrochemically inert bulk WS2 into a multidomain electrochemical catalyst that enables scalable and cost-effective implementation of the hydrogen evolution reaction (HER) in water electrolysis is reported. Direct dry transfer of WS2 flakes to a gold thin film deposited on a silicon substrate provides a general platform to produce the working electrodes for HER with tunable charge transfer resistance. By treating the mechanically exfoliated WS2 with sequential Ar-O2 plasma, mixed domains of WS2 , WO3 , and tungsten oxysulfide form on the surfaces of the flakes, which gives rise to a superior HER with much greater long-term stability and steady-state activity compared to Pt. Using density functional theory, ultraefficient atomic sites formed on the constituent nanodomains are identified, and the quantification of atomic-scale reactivities and resulting HER activities fully support the experimental observations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app