Add like
Add dislike
Add to saved papers

Zero-Field Splitting Tensor of the Triplet Excited States of Aromatic Molecules: A Valence Full-π Complete Active Space Self-Consistent Field Study.

A method to predict the D tensor in the molecular frame with multiconfigurational wave functions in large active space was proposed, and the spin properties of the lowest triplets of aromatic molecules were examined with full-π active space; such calculations were challenging because the size of active space grows exponentially with the number of π electrons. In this method, the exponential growth of complexity is resolved by the density matrix renormalization group (DMRG) algorithm. From the D tensor, we can directly determine the direction of the magnetic axes and the ZFS parameters, D - and E -values, of the phenomenological spin Hamiltonian with their signs, which are not usually obtained in ESR experiments. The method using the DMRG-CASSCF wave function can give correct results even when the sign of D - and E -values is sensitive to the accuracy of the prediction of the D tensor and existing methods fail to predict the correct magnetic axes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app